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1 Introduction

A fundamental problem in image processing is that of computing discrete convolutions
[7, 9, 4]. Consider an image which is given as a 2-dimensional m x n array [ of real
numeric values. We will think of the image as defining a function I : Z? — R, where

I(9) = 119y, 9.] ifl1<g,<nand1l<g, <m,
9= 0 otherwise.

(The transposition of g, and g, reflects the convention that arrays are indexed first by
row, then by column.) The kernel of the convolution is a ¢ x r image array K. The
discrete convolution [7] of I with K, denoted by [ x K, is defined to be

(1 * K)[z,y] :ZZI[a,b]-K[w—a,y—b].

It is common to embed [ and K within larger images to avoid wraparound effects, but
this will not be of concern to us here.

A binary convolution is a special case of a discrete convolution where K is a 01 valued
function. Binary convolutions are of particular interest in computational morphology and
digital geometry [15, 16]. For example, the dilation of a digital shape, described by a
0-1 image I, by a digital kernel K described by another such image can be expressed by
computing the convolution /#(—K), and then thresholding this image so that all positive
values are mapped to 1. Binary convolutions are also useful in template matching [7] in
binary images, through the use of the related correlation operation. Our results apply to
computing binary correlations as well. Binary convolutions have the following geometrical
interpretation: Let —K denote the set of points {—p | p € K}. We can interpret [+ K(p)
as placing a copy of —K at location p of the image, and then computing the number of
pixels that are overlapped by — K.

One problem with computing discrete convolutions is that the operation can be quite
expensive when the kernel of the convolution is large. A naive algorithm for computing
the convolution considers each placement of the ¢ x r kernel, and computes the weighted
sum in O(gr) time. Since there are mn possible placements, this results in an algorithm
whose running time is O(mngr). Here we assume that ¢ < m and r < n, but these
quantities may still be large. The question is whether we can improve on the ¢r factor,
especially when ¢r is large.

One approach is based on the idea of decomposing a convolution involving a large
kernel as a sequence of convolutions involving small kernels [11, 14]. In the case of binary
morphology, search algorithms have been proposed to decompose the kernels as dilations
of two-point structuring elements [18]. The basic two-point search algorithm was also
extended to grayscale operations [3]. However, many shapes such as triangles are not two-
point decomposable and so the two-point decomposition algorithms cannot be applied
to them. When the kernel shape is restricted to shapes formed by intersections of half-
planes at multiples of 45 degrees, it has been shown that the kernel can be decomposed
as dilations of kernels from a basis set [10]. This decomposition method has not been
generalized to discrete polygons with sides at arbitrary angles.
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The concepts of Singular Value Decomposition (SVD) and Small Generating Kernel
(SGK) have been used to speed up the grayscale convolution processing time by decom-
posing the kernel into separable filters and then decomposing each separable filter as a
sequence of SGK filters [12]. The speedup is obtained by using the kernels corresponding
to the larger eigenvalues. The SVD/SGK methods, however, are useful only in the case
of grayscale convolutions.

Other methods involve using table lookup to avoid the cost of multiplication [5, 17].
Burt proposed a technique based on the use of quadtrees [2]. However, these methods
improve running times only by a constant factor. A common approach to computing
convolutions for large kernels is first to compute the Fourier transforms of the image
and kernel, denoted by I’ and K’. Then the convolution [ * K can be approximated
in O(mn) time by computing the elementwise product I’ - K’, and then inverting the
transform [7]. This approach requires only O(mnlog(mn)) time, which is a significant
saving. However, for morphological and other discrete applications, it has the inelegant
property of converting an exact discrete problem into a continuous problem.

In this paper we consider a significantly different approach. We consider the problem
of computing binary convolutions where the kernel of the convolution is derived from a
convex polygon. We introduce the notion of a wvalid digitization of a geometric shape.
We present formal definitions later, but intuitively, a digitization is valid if pixels lying
entirely inside the shape are in the digitization and pixels lying entirely outside the shape
are not in the digitization. We then define the notion of a valid convolution, which is
based on using valid digitizations of the kernel to perform the convolution. Different
placements of the kernel are allowed to use different digitizations. We show that with
this added flexibility it is possible to compute digitizations for convex polygonal kernels
in time that is independent of the area or perimeter of the kernel. In particular, we show
that a valid convolution of an m x n image with a k-sided convex polygonal kernel can be
computed in O(kmn) time and O(mn) space. This type of convolution is of interest in
morphology applications, where the operator is a convex polygon or can be approximated
by one. If k is small, this can be significantly faster than existing approaches for large
kernels. The most closely related work to ours is that of box-filtering [13]. However,
box-filtering is limited to rectangular shapes. Our approach is a generalization of the
box-filtering method to non-rectangular convex polygons.

2 Definitions and Notation

We begin with a number of definitions. Let Z? denote the set of ordered pairs of integers,
called grid points. Given g € Z?*, define 7(g) to be a half-open unit square centered at g,
called ¢’s pizel. The set of 7(g) for all g € Z* subdivides the real plane into a collection
of unit squares with pairwise disjoint interiors.

Let R? denote the set of ordered pairs of reals. Given a set P C R? and ¢t € R?, let
t + P denote the translate of P by ¢, that is,

t+P={t+p|pe P}

We will call this the placement of P at t. Let —P = {—p | p € P}, and define t — P to
be t + (—P). Given a set P C R? we are interested in ways of mapping P into a set
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of grid points, called a digitization. We say that a digitization D(P) C Z? is valid if for
every pixel that lies entirely within P the corresponding grid point is in the digitization,
and for every pixel that is entirely disjoint from P the corresponding grid point is not in
the digitization. More formally,

m(g) S P = geD(P)
(r(g)NP=0) = g¢& D(P).

Pixels that partially overlap P may or may not be in a valid digitation. An example of
a valid digitization is the midpoint digitization, denoted by D™(P), which consists of all
grid points that lie within P. Fig. 1 shows valid digitizations of three different placements
of the same polygon P. The one in the center is the midpoint digitization.

Figure 1: Valid digitizations.

Given an image I and any set of grid points G C Z2, define the weight of G relative
to I to be the sum of the image values of G-

w(G) = I(9).

g€eG

Let K be a convex polygon in the plane, and let [ be an image. We define the
midpoint convolution of I by K to be an m x n image C, where C(t) is defined to be the
weight of the midpoint digitization of — K placed at ¢, that is,

Cy= > I

geED™(t—K)

K is called the kernel of the convolution. A walid convolution of I by K is defined
in the same way, but where D™ (¢t — K) is replaced by any valid digitization of ¢ —
K. Note that because valid digitizations are not unique, different placements may be
digitized differently. The midpoint and valid convolution are generalizations of the binary
convolution.

Our main result is the following.

Theorem 1 Given an mxn image [ and a k-sided convex polygon K, a valid convolution
of I by K can be computed in O(kmn) time and O(mn) space.
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Henceforth, to avoid the continual need for negations, we will assume that the kernel
for the convolution is — K, and so each element of the convolution is the weight of some
translate of K. We assume that the image is a two-dimensional rectangular array with m
rows and n columns. The pixels of the image form a subdivision of the image rectangle
into squares:

R=A{(x,y) |05 <z<n+0.5, 0.5<y<m+0.5}.

All grid points outside this rectangle are assumed to have value 0. We assume that the
kernel K is defined by a counterclockwise cyclic list of its vertices.

3 The Algorithm

We first give an overview of the algorithm for computing a valid convolution. Let &
denote the number of sides of the kernel K, and recall that m and n denote the height
and width, respectively, of the image. The algorithm consists of a number of stages.
The first involves preprocessing the kernel K, and results in a representation of K as a
weighted sum of a set of O(k) primitive shapes. Each primitive shape is an axis-aligned
rectangle or right triangle. The non-axis-aligned side of a right triangle is called its
slanted suide.

The second stage involves preprocessing the image. We create at most O(k) sequences
of equally spaced parallel lines, where each sequence is either horizontal, vertical, or
parallel to a side of K. These are called canonical lines. Each sequence of canonical lines
partitions the image rectangle into a collection of thin regions, called canonical strips.
We digitize each strip using midpoint digitization and preprocess it by a method to be
described later. The resulting structure has the property that, in constant time, it is
possible to compute the total weight of a trapezoid bounded by a strip and two lines that
are either horizontal or vertical. We will show that this structure can be built in time
and space O(mn) for each side of K.

After these preprocessing phases, the third stage of the algorithm computes the actual
convolution. It is based on computing valid convolutions for each of the primitive shapes
and then summing the results over all O(k) shapes to get the final convolution. For
any placement of a primitive shape, we will define a special valid digitization called the
canonical digitization. These digitizations will be defined in such a way that they are
pairwise disjoint, and their union is a valid digitization of K. We will show that for
each primitive shape, the weight of a single placement of the shape can be computed
in O(mn) time. Then we will show that once the weight of one placement is known, it
is possible to update the weight when the placement is translated by a unit distance,
either horizontally or vertically. This is done in constant time, by applying the structure
described in the previous paragraph. Thus the entire convolution for one shape can be
computed in O(mn) time by computing an initial weight and then shifting the shape,
pixel by pixel, over the entire image. By applying this to each primitive shape and
then computing the weighted sum of these convolutions, the convolution by K can be
computed in O(kmn) total time. The various elements of the algorithm are explained in
detail in the following subsections.



3.1 Decomposition into Primitive Shapes

As mentioned above, the first stage of the algorithm involves decomposing K into O(k)
primitive shapes. The decomposition is constructed by first enclosing K in an axis-aligned
bounding box B, and then decomposing the difference B\ K into a collection of rectangles
and right triangles. For each vertex of K imagine shooting two bullets horizontally and
vertically away from the interior of K, until hitting either the bounding box B or the
previous bullet’s path. (See Fig 2.) It is easy to see that these bullet paths subdivide
B\ K into a set of rectangles and right triangles with pairwise disjoint interiors. Together
with B, these form the set of primitive shapes.

B

Figure 2: Decomposing the kernel into primitive shapes.

Let k& denote the number of sides of K and let r denote the number of such shapes.
Observe that each time a bullet is shot, it splits some region into two subregions. Since
at most 2k bullets are shot (at most two per vertex), and we started with the bounding
box B, it follows that r < 2k 4+ 1 = O(k). Let K1, Ks,..., K, denote these shapes. Let
bnd(K;) denote the boundary of K.

First we observe that K can be expressed as a weighted sum of these shapes. The
following lemma establishes this fact for all nonboundary points. The bounding box B
is assigned a weight of +1, and all the other primitive shapes are assigned a weight of
—1. Let w; denote the weight of K;. Let K;(p) be 1 if p € K; and 0 otherwise. For all
p € R? define the weight of p to be W(p) = >I_, w; - Ki(p).

Lemma 1 For all p€ R?, p ¢ U'_,bnd(K;),

1 ifpe K,

win-{ 0

otherwise.

Proof: Points outside B are clearly not in K and have weight 0. Points within the
interior of K have weight 1 since they lie inside B but outside all the other primitive
shapes. Because the interiors of the primitive shapes other than B are pairwise disjoint
and cover B\ K, a point of B\ K that does not lie on the boundary of any primitive shape
has weight 1 —1 = 0. O

Points that lie on the boundaries of the primitive shapes are messier to deal with,
since the result holds only if each is assigned to a unique primitive shape. We will deal
with this by a tie-breaking rule, which we term the nonintegrality assumption. We assume
that for each ¢ € Z?2, the coordinates of the vertices of ¢ + K are not integers. With this
assumption, no grid points lie on the horizontal or vertical boundaries of the primitive
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shapes. This can be handled by assuming that K is given with arbitrary (possibly
integer) coordinates, and that each integer coordinate has been perturbed by adding
an infinitesimal value ¢ > 0. This can be implemented symbolically without actually
modifying the coordinates of K. When making a comparison between a coordinate and
an integer quantity, if the values are not equal, the result of the comparison is unchanged.
If the values are equal, we break the tie as if the coordinate value has been increased
infinitesimally. The slanted sides bounding primitive shapes may also pass through grid
points. These will also be handled by symbolic perturbation. But this is not necessary,
because our definition of a valid digitization provides the freedom to either select such a
point or not.

3.2 Canonical Lines and Canonical Digitizations

For each t € Z?, and each primitive shape of K;, we define a special digitization of the
placement ¢ + K;, called the canonical digitization and denoted by D°(t + K;). This
will be done in such a way that the weighted sum of these digitizations defines a valid
digitization of the placement ¢ + K.

Consider any primitive shape K;. If K; is a rectangle then define D°(t + K;) to be
the set of grid points lying within the intersection of { + K; and the image rectangle R.
(By our nonintegrality assumption, no grid points lie on the boundary of this set.) If
K; is a right triangle, then main issue is how to digitize its slanted side. To do this we
introduce the notion of a canonical line. We consider two cases depending on the slope of
K;’s slanted side. If the absolute value of the slope is less than 1, we call K; a low-slope
triangle; otherwise, we call it a high-slope triangle. Below we consider the high-slope case.
The low-slope case is handled in a symmetrical manner, by swapping the roles of the -
and y-axes.

Let s denote the slope of the slanted side of K;. Consider the sorted sequence of
lines that intersect the image rectangle R, have slope s, and have z-intercept an integer
multiple of 0.5. Such a sequence is illustrated in Fig. 3 below. Observe that the hor-
izontal distance between two consecutive canonical lines is 0.5. (In the low-slope case,
y-intercepts are used instead, and the vertical spacing is 0.5.) These lines subdivide R
into a collection of thin regions, called canonical strips. (The reader may wonder about
the reason for the choice of 0.5 as the separation distance. This will be discussed later.)

Figure 3: Canonical lines.



Lemma 2 For any slope s, the number of canonical lines and number of canonical strips

is O(m +n).

Proof: Assume for concreteness that s is positive and s > 1. The proofs for the other
cases follow from simple symmetry. Recall the definition of the image rectangle R from
Section 2. By easy calculations, it can be seen that any line of slope s intersects R if and
only if its xz-intercept lies within the interval

0.5 1
1= [0.5—&, n—|—0.5<1——>].
S

S
/ (0.5,m+0.5) R

I °//(n+o.5,o.5)
0.5- (m+0.5)/s n+0.5(1-1s)

Figure 4: The range of canonical lines.

(See Fig. 4.) It follows that the set of z-intercepts of the canonical lines for slope s is
{1/2 |« € ZN 21}, where 21 is the interval whose endpoints have coordinates twice those
of 1. Since s > 1, the width of [ satisfies

width(I) = n+0.5 (1 - %) — 0.5+ %05 < n+m+0.5.
An interval of width w can be subdivided into at most w 4+ 1 strips of unit length. Since
the canonical strips have width 0.5, it follows that the number of canonical strips is at
most 2(n +m) + 3. The number of canonical lines is at most one greater than this. O

The canonical digitization of t+ K; is defined as follows. Consider the line £ supporting
the slanted side of K. If £ does not intersect the image rectangle R, then the intersection
of t + K; is either empty or is a rectangle. In the latter case, the canonical digitization
is defined to be the set of grid points lying within this rectangle. Otherwise, assume
for concreteness that the triangle lies to the right of the slanted line. Select the nearest
canonical line £* that lies on or to the right of ¢ (see Fig. 5(a)). This can be accomplished
by computing the z-intercept of £, and then rounding to the next larger integer multiple
of 0.5. In general, ¢ is rounded towards the interior of the triangle it supports.

The canonical digitization is defined to be the set of grid points that lie within the
intersection of the bounding rectangle of {4 K; and the image rectangle R, and either on or
to the right of £*. (These are shown as black points in Fig. 5(a).) Notice that by rounding
to the canonical line lying towards the interior of the triangle, the canonical digitization
will generally consist of a subset of the grid points lying in ¢ + K;. Thus it will generally
be a subset of the midpoint digitization of ¢ + K;. (For example, in Fig. 5(a) two grid
points in the midpoint digitization have been excluded from the canonical digitization.)



@ (b)

Figure 5: Canonical digitization.

The canonical digitization for the entire shape is defined by taking the weighted sum
of points in the canonical digitizations of the primitive shapes. More formally, recalling
the weights w; introduced above, we define the canonical digitization of ¢ + K to be the
weighted sum of the digitizations of ¢t + K, that is,

D(t+ K)=> w;- D°(t + K;).
i=1
In other words, a pixel lies in the canonical digitization if the weighted sum of sets
containing this pixel is 1, and does not lie in it if this weighted sum is 0. (An example is
shown in Fig. 5(b). The grid points belonging to the final digitization are shown as black
points in this figure.) Since the primitive shapes lie outside K, observe that the sides are
rounded away from the interior of K, and hence the points of the canonical digitization
of K will generally be a superset of the points in the midpoint digitization of K. Next
we show that the result is a valid digitization of K.

Lemma 3 For any convex polygon K, and any vector t € Z?, the canonical digitization

De(t+ K) is a valid digitization of t + K.

Proof: By the definition of a valid digitization, it suffices to show the following for each
grid point g € Z?. Recall that 7(g) is the pixel (open unit square) centered at g.

(1) If =(g) lies entirely within (¢ + K) N R then g is assigned a weight of 1.
(2) If x(g) is entirely outside of ({ + K) N R then g is assigned a weight of 0.

(3) If #(g) intersects the boundary of (t + K) N R then g is assigned a weight of either
0 or 1.

Recall that by our nonintegrality assumption, no grid point lies on the horizontal or
vertical boundary of any primitive shape. Also recall that a grid point ¢ is in the midpoint
digitization of a shape if and only if ¢ lies in that shape. To establish (1), observe that
every grid point in (f + K) N R is given an initial weight of 1 because it lies within the
bounding rectangle ¢ + B. Furthermore, because each of the canonical digitizations is
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a subset of the midpoint digitization for that shape, no canonical digitization for any
primitive shape can contain this point. Thus, its total weight is 1.

To establish (2), consider a grid point g that is not in (¢t + K) N R. If g lies entirely
outside the bounding box ¢+ B, or outside the image bounding box R, it is not allocated
to any canonical digitization, and so it is given a weight of 0. Otherwise, ¢ lies within
this intersection, but lies within some primitive shape ¢ + K;. We consider two cases.

First, if ¢ lies within the canonical digitization of this shape, we assert that g will
not be in the canonical digitization of any other primitive shape (other than B) and
hence it will be assigned a weight of 1 — 1 = 0. To see this, first recall that (ignoring
the bounding box B) the primitive shapes have disjoint interiors and have no grid points
on their boundaries. Thus the midpoint digitizations of the shapes are pairwise disjoint.
Recall that each canonical digitization is a subset of a midpoint digitization, and hence
they too are pairwise disjoint, implying that ¢ is in no other canonical digitization.

The second case is when the point ¢ is not in the canonical digitization of t + K;. We
claim that this cannot happen under the hypothesis of (2). Since g lies within (14+ K;)N R,
and since there are no grid points on the horizontal and vertical sides of primitive shapes,
g fails to lie in the canonical digitization because it lies outside the associated canonical
line. If this is a high-slope line, the canonical line lies within a horizontal distance of
0.5 of the supporting line for the slanted side. Since the point lies outside the canonical
line, but inside the supporting line (since it is inside the primitive shape), it follows that
the horizontal distance from the point to the slanted side’s supporting line is at most
0.5. However, this together with the fact that ¢ lies in £ + K; implies that the associated
side of K intersects ¢’s pixel. This implies that ¢’s pixel does not lie entirely outside K
as hypothesized. (In the case of a low slope the argument is the same, but the vertical
distance is at most 0.5.) This establishes (2).

Finally, to show (3), consider a pixel 7(g) that intersects the boundary of ({+ K)N R.
If g lies outside the bounding box (¢t + B)N R, it is assigned a weight of 0. Otherwise, ¢
will be assigned an initial weight of 1 because it lies inside the bounding box. We claim
that g can be in the canonical digitization of at most one other primitive shape. This is
because (by our nonintegrality assumption) ¢ can lie in at most one primitive shape, and
hence it lies in the midpoint digitization of at most one primitive shape. Because the
canonical digitization of a shape is a subset of the midpoint digitization, ¢ lies in at most
one canonical digitization. If ¢ is in some such canonical digitization, its final weight is
0, and otherwise its weight is 1. This establishes (3). O

The reason for rounding lines toward the interior of the primitive shape triangles and
the choice of 0.5 as the separation distance between canonical lines is now clear. The
proof of (2) relied on the fact that the horizontal distance is half the width of a pixel. The
proof of (3) relied on the fact that canonical digitizations are subsets of the associated
midpoint digitizations. If this were not the case, a pixel interior to K but intersected by
two sides of K (say one on its left and one on its right) might be assigned to two canonical
digitizations. The resulting weight of the associated grid point would be 1 —1 -1 = —1,
and this does not correspond to any valid digitization of K.



3.3 Updating Canonical Digitizations

The main algorithmic tasks needed to compute the digitization are (1) how to compute
the weight of the canonical digitization of a single placement of a primitive shape, and
(2) how to update the weight of the canonical digitization when the shape is shifted by
one unit distance, either horizontally or vertically. The first task can be accomplished
by adapting any standard algorithm for digitizing convex polygons [6]. The second task
will be addressed in the remainder of this section.

Rectangular Shapes. Let us consider the case of a rectangular primitive shape K;,
since 1t is the simplest. For concreteness we consider the case of a translation to the right
by one unit. Let ¢ and ¢’ be two placement vectors such that ' —¢ = (1,0). (The other
unit shifts are handled similarly.) We assume that the weight of the canonical digitization
of t + K; is known, and we want to compute the weight of the canonical digitization of
t'+ K;. First, observe that the symmetric difference between (¢ 4+ K;) and (¢'+ K;) is the
union of two congruent rectangles each of unit width, the left one r belonging to ¢t + K;
and the right one r’ belonging to t' + K;. (See Fig. 6(a).) If the width of K; is less than
1, we can think of these unit-width rectangles as overlapping each other. The change in
the weight between the two placements is easily seen to be the difference between the
weights of ' and r. Thus we have

w(D(1 + K3)) — w(D(t + K;)) = w(D*(r")) — w(D(r)).

The incremental change in weight can be computed in constant time once we know
the weights of r and r’. There is a simple way to do this. First we preprocess the image.
For each column and each grid point we store the total weight of the image points in
that same column that have equal or smaller y-values. Following common usage in the
field of parallel algorithms, we call this a prefiz sum. (Figs. 6(b) and (c) show the image
weights and the column prefix sums, respectively.) Then to compute the weight within
the column rectangle, we take the difference between the prefix sums of the topmost grid
point in the rectangle and the grid point just below the bottom of the rectangle (or zero,
if the rectangle extends to the lowest pixel in the column). In Fig. 6, the weights of r
and " are 4 — 1 = 3 and 6 — 2 = 4, respectively. Thus the net change in weight between
placements ¢ and ' is 4 — 3 = 1.

The prefix sums for each column can be computed by a simple scan in O(m) time,
implying that all the prefix sums can be computed in O(mn) total time. The weight
of the canonical digitization of any rectangle of width 1 can be computed in constant
time by rounding its xz-coordinates to determine the grid column that it spans, and then
rounding its y-coordinates to determine the elements of the prefix sum whose difference
is to be taken.

A vertical unit-length translation is handled similarly, but it results in two rectangles
of unit vertical height. The preprocessing for this case consists of computing prefix sums
for each of the rows.

Triangular Shapes: Horizontal Translation. Next we consider how to update the
weight of the canonical digitization of the placement of a right-triangle primitive shape
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Figure 6: Updating weights for the translation of a rectangle.

K;. We will assume that the slanted side of K; has a slope that is positive and at least
1. The cases for negative and/or low slopes are handled similarly.

Let us first consider the case of a horizontal translation; we will consider vertical
translations later. As before, let { + K; denote the current placement of K;, whose weight
we know, and let ¢’ + K; be the new placement, whose weight we wish to compute. Let
t'—t = (1,0). (See Fig. 7(a). Assume that the figure shows the triangles after the slanted
sides have been rounded to the appropriate canonical lines.) It is easy to see that the net
change in weight can be expressed as the sum and difference of the two lightly shaded
trapezoids shown in the figure. One trapezoid has vertical parallel sides aligned with the
right side of the shape and is added. The other has parallel sides aligned with the slanted
side and 1is subtracted. The dark shaded region shown in the figure is both added and
subtracted, so its net weight change is zero.
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Figure 7: Updating weights for the horizontal translation of a triangle.

The horizontal width of the trapezoid along the right side is exactly one unit, and
hence it spans exactly one vertical column of grid points. Its adjusted weight can be
computed using the same method described earlier for rectangles. In particular, assuming
that the prefix sums for the columns have been computed, it suffices to determine the
topmost grid point of the column lying within the trapezoid and the topmost grid point
of the column lying immediately below the trapezoid. The only added complication here
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is that the top side of the trapezoid is not horizontal, as it was in the rectangle case.
Nonetheless, by computing the y-coordinate of the intersection point of the slanted top
side of the trapezoid with the line containing the grid points and rounding to the next
smaller integer value, we can compute this grid point and its prefix weight in constant
time. (For example, the weight of the vertical trapezoid shown in Fig. 7(c) is 6 —2 = 4.)

Next we consider the canonical digitization of the slanted trapezoid. We assert that
the horizontal distance between the slanted sides in the canonical digitization of this
trapezoid is exactly one unit. This follows from the facts that (1) the original slanted
lines of the triangle before and after translation are separated by a distance of one unit,
(2) the canonical lines for high slopes are separated by a horizontal distance of 0.5, and
(3) both slanted lines are rounded in the same direction.

Because the horizontal width of the slanted trapezoid is one unit, it spans exactly
two canonical strips. To compute the weight of the trapezoid, it suffices to compute the
sum weights of the pixels lying in the two subtrapezoids defined by the intersections of
the two canonical strips and the trapezoid. First, we preprocess the image by computing
the prefix sums within each canonical strip. (This is shown in Fig. 7(d).) Once these
prefix sums have been computed, we compute the difference between the prefix sum of
the the topmost grid point in each subtrapezoid and the topmost grid point in the strip
lying just below each subtrapezoid. (In the figure, the result is (4 —0) 4+ (3 — 1) = 6.)

Here is a more detailed explanation of the process. For each row of the figure and for
each canonical strip the preprocessing phase computes the weighted sum of the grid points
lying on or below this row in the strip. (For the low-slope case, the sums are associated
with the columns of the image.) Notice that not every row has a grid point lying in the
strip. This issue will be addressed in the proof of Lemma 4. To compute the points lying
just below the bottoms of the subtrapezoids in each strip, compute the y-coordinate of
the bottom side of K; 4+ ¢, and then round down to the next smaller integer to get the
appropriate row. To compute the topmost grid point in a subtrapezoid, first round the
right vertical side of the trapezoid to the next smaller integer z-coordinate, so that it
coincides with a column of grid points. Compute the y-coordinate of the intersection of
this vertical line with the top line of the canonical strip. Round this y-coordinate down to
the next smaller integer. It is not hard to see that any grid point lying in the subtrapezoid
must lie on or below this row. This process is performed for both subtrapezoids, and the
two weights are added together.

Triangular Shapes: Vertical Translation. The last case to be considered is the
incremental change in the weight of a right triangle primitive shape, again with a high
slope, but in the case of a vertical translation. Suppose that the triangle is translated
vertically upward by one unit, from placement ¢ to t', where t'—¢ = (0, 1). (See Fig. 8(a).)
Let s denote the slope of the slanted side. As in the horizontal case, the change in weight
can be expressed using the weights of two trapezoids. In this case one trapezoid is aligned
with the bottom of K; and the other along the slanted side. The weight of the bottom
trapezoid can be handled in a symmetrical way to what was done in the horizontal case.

The slanted side is somewhat different, though. A convenient property of the hor-
izontal case was that the slanted trapezoid spanned exactly two canonical strips, and
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Figure 8: Updating weights for the vertical translation of a triangle.

hence the computation could be broken down into computing the weights of exactly two
subtrapezoids. However, the horizontal distance between a high-slope line and its vertical
translate of one unit is 1/s, which is not in general an integer. We claim that this does
not result in any significant added complexity. In this case, since the horizontal distance
between the two canonical lines is 1/s, and since s > 1, it follows that the horizontal
distance between the slanted lines is at most 1. Because the two lines are rounded in
the same direction, after rounding, the slanted-side trapezoid will generally span either
0, 1, or 2 canonical strips. Thus the number of subtrapezoids is not fixed, but will either
be 0, 1, or 2. (For example, in Fig. 8(b) there is only one subtrapezoid.) Thus, the
procedure described for the horizontal case can be applied here as well. The only change
is to determine the actual number of canonical strips that are spanned by the slanted
sides after rounding.

Summary. The results of this section are summarized in the following two lemmas.

Lemma 4 The preprocessing for all canonical strips for a given slope can be done in
O(nm) time and O(nm) space.

Proof: We consider the case of high slopes. Low slopes follow from a symmetrical
argument, and horizontal and vertical strips have already been discussed. By Lemma 2
the number of canonical strips for any slope is O(m 4 n). We will establish the result
first for strips of horizontal width 1, and then modify this for strips of width 0.5.

For each canonical strip of width 1, each row of the image intersects the strip in a
single grid point (assuming consistent rounding). We can determine these grid points by
computing the point at which the canonical line intersects the image rectangle R, and
then applying an appropriate modification of any standard line digitization algorithm,
(for example, Bresenham’s algorithm [1, 6]) to the canonical lines defining the boundary
of the strip. As we digitize the line we can maintain the prefix sum and assign it to each
pixel in the strip. Such an algorithm takes time proportional to the number of pixels
processed within the strip. The total time over all strips will be equal to the number
of strips plus the total number of pixels processed. Because the canonical strips for any
slope cover every pixel in the image exactly once, it follows that the total time to process
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all the strips for this slope will be O(mn). Since each pixel holds a single prefix value
the space is also O(mn).

We can modify this scheme for canonical strips of width 0.5 as follows. Suppose we
have already digitized the canonical strips of unit width. For each such strip, we digitize
the canonical line lying midway between the sides of the strip, determining which grid
points of the strip lie on the left side and which lie on the right side of this midway line.
Again this can be done using any line digitization algorithm. We replace the single prefix
sum value in each pixel with a pair of values, one for the left substrip and one for the
right substrip. Since each row of the original strip contributed a single grid point to the
strip, there will be an entry for each substrip and for each row. As before, this can be
performed in O(mn) time and space. 0

The following lemma has already been established in the course of this section.

Lemma 5 After preprocessing has been completed, if the weight of the canonical digitiza-
tion of a placement of a primitive shape t + K; is known, then the weight of the canonical
digitization of any unit-length translation of the shape, either horizontally or vertically,
can be computed in constant time.

3.4 The Canonical Convolution Algorithm

We can now complete the description of the algorithm for computing the approximate
convolution. As mentioned before, the algorithm operates by computing the weights of
the canonical digitizations for each of the O(k) primitive shapes, and then computing
the weighted sum over all these shapes. Lemma 3 states that the resulting sum is a
valid digitization, and hence the resulting convolution, called the canonical convolution,
is a valid convolution. Here is the entire algorithm, which is given the input image
I[1,...,m,1,...,n] and the kernel polygon K with k sides.

(1) Using the method of Section 3.1, subdivide K into r = O(k) primitive shapes
Ki, Ky, ..., K, with associated weights w;.

(2) Compute the prefix sums for the rows and columns of the image in O(mn) time.
Initialize the convolution image C[1,...,m,1,...,n] to 0.

(3) For ¢ from 1 to r, perform the following steps:

(a) By brute force compute the canonical digitization of K; at t, = (1,1).

(b) If K; is a right triangle, let s denote the slope of its slanted side. Compute the
canonical lines for this slope (as defined in Section 3.2) and compute prefix
sums for the resulting canonical strips using the method outlined in Lemma 4.

(c¢) For the translation vector ¢ zig-zagging along the grid points of the rows and
columns of the image rectangle R, incrementally update the weight of the
canonical digitization of the new placement of K, using the methods de-
scribed in Section 3.3. From Lemma 5 we know that each update can be
computed in constant time. Add each of the resulting weights, times w;, into
the convolution image Ct].

14



The correctness of this procedure has been established in the previous discussion. The
running time of step (1) is O(k). Step (2) can be performed in O(mn) time. Step (3a)
can be performed, by any algorithm for digitizing convex polygons [6, 8]. The running
time of such an algorithm is proportional to the number of pixels covered by K N R, and
this can be at most O(mn). By Lemma 4, step (3b) also takes O(mn) time. Step (3c¢)
takes O(mn) time, since each update takes constant time, and the shape is incrementally
shifted to each of the mn grid points in the image. Since it is repeated for each of the
O(k) primitive shapes, step (3) takes total time O(kmn).

As mentioned in Lemma 4, the space requirements are O(mn) per slope. Since we can
discard the prefix sums computed in step (3b) after their use in step (3c), we need to keep
only three copies of the prefix sums at any time (one for the slanted slope, one for the
rows, and one for the columns). Thus the total space requirements are O(3mn) = O(mn).
This establishes our main result, Theorem 1.

4 Conclusions

We have presented an efficient algorithm for computing approximate convolutions for
binary kernels that are modeled as convex k-sided polygons. Our algorithm runs in
O(kmn) time on an m X n image, irrespective of the area or perimeter of the kernel.
Our approach is based on a special type of digitization of the kernel, called a canonical
digitization, which varies from one placement to the next. We have shown that canonical
digitizations can be updated efficiently through the use of prefix sums.

Some interesting open problems are suggested by this work. One question is whether
these techniques can be generalized to convolutions involving kernels that are multi-
valued, or to nonconvex simple polygons. In theory, such a kernel could be subdivided
into convex parts. However, Lemma 3, which establishes the validity of the canonical
digitization, does not generalize immediately to collections of convex polygons. Another
question is: If approximate convolutions are used to approximate morphological opera-
tions (such as dilation), what can be said about the properties of the resulting shapes,
as compared with their exact counterparts?
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